organic compounds

9505 measured reflections

 $R_{\rm int} = 0.101$

4254 independent reflections

3370 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2,3-(3,6,9-trioxaundecane-1,11diyldithio)-1,4,5,8-tetrathiafulvalene-6carboxylate

Rui-bin Hou,^a Bao Li,^b Bing-zhu Yin^a* and Li-xin Wu^b

^aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and ^bState Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: zqcong@ybu.edu.cn

Received 20 March 2009; accepted 7 April 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.008 Å; R factor = 0.060; wR factor = 0.172; data-to-parameter ratio = 17.4.

In the title molecule, $C_{16}H_{20}O_5S_6$, the two five-membered rings form a dihedral angle of 4.7 (3)°. The crystal packing exhibits weak intermolecular $C-H\cdots O$ hydrogen bonds, which link the molecules into chains propagating in [110], and $\pi-\pi$ interactions, indicated by the short distances [3.756 (5) Å] between the centroids of five-membered rings from molecules related by translation along the *b* axis.

Related literature

For background to tetrathiafulvalene derivatives, see Hansen *et al.* (1992); Trippé *et al.* (2002). For details of the synthesis, see Liu *et al.* (2000).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{20}O_5S_6\\ M_r = 484.68\\ \text{Monoclinic, } Cc\\ a = 22.604 \ (5) \ \text{\AA}\\ b = 5.2048 \ (10) \ \text{\AA}\\ c = 17.801 \ (4) \ \text{\AA}\\ \beta = 90.65 \ (3)^\circ \end{array}$

 $V = 2094.1 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.68 \text{ mm}^{-1}$ T = 291 K $0.20 \times 0.13 \times 0.12 \text{ mm}$ Data collection

```
Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{\rm min} = 0.876, T_{\rm max} = 0.923
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.172$	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.96	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
4254 reflections	Absolute structure: Flack (1983),
245 parameters	1855 Friedel pairs
2 restraints	Flack parameter: -0.12 (12)

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdots O3^i$	0.93	2.35	3.127 (7)	141
6	1 . 1			

Symmetry code: (i) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programme of Higher Education (grant No. 20060184001) and the Open Project of the State Key Laboratory of Supramolecular Structures and Materials, Jilin University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2536).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hansen, T. K., Jørgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403–6409.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, S. G., Liu, H. Y., Bandyopadhyay, K., Gao, Z. Q. & Echegoyen, L. (2000). J. Org. Chem. 65, 3292–3298.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461–2464.

supplementary materials

Acta Cryst. (2009). E65, o1057 [doi:10.1107/81600536809013154]

Methyl 2,3-(3,6,9-trioxaundecane-1,11-diyldithio)-1,4,5,8-tetrathiafulvalene-6-carboxylate

R. Hou, B. Li, B. Yin and L. Wu

Comment

Cation sensors based on tetrathiafulvalene (TTF) derivatives have currently attracted widespread attention because such molecules show electrochemical recognition of various metal cations (Trippé *et al.*, 2002). We incorporated TTF with a 15-membered O, S hybrid crown ether to synthesize the title compound because it should be able to bind lithium ion (Hansen *et al.*, 1992). We report herein the synthesis and structure of the title compound, (I).

The molecular structure of (I), $C_{16}H_{20}O_5S_6$, is shown in Fig.1. Every molecule contains one TTF moiety and one dithia-15-crown-5 ring.TTF moiety is composed of two nearly coplanar five-membered rings with a dehedral angle of 4.68 (27) °. The dithia-15-crown-5 ring adopt a twiste conformation and situated almost perpendicular to TTF moiety. Owing to the absence of strong hydrogen bond donors, the crystal packing is stabilized by weak C—H···O hydrogen bonds, involving the O atoms of the crown ether as acceptors, and the methyl C—H groups as donors (Table 1). The crystal packing exhibits also π - π interactions, proved by short distance Cg1···Cg2ⁱⁱ of 3.756 (5) Å, where Cg1 and Cg2 are centroids of S1/C3/C4/S2/C5 and S3/C6/S4/C7/C8 rings, respectively [symmetry code: (ii) x, 1+y, z].

Experimental

6,7-Dimethoxycarbonyl-2,3- bis(3',6',9'-trioxoundecylthio)-1,4,5,8-tetrathiafulvalene (Liu *et al.*, 2000) (500 mg, 0.92 mmol) were dissovled in DMF (40 ml), LiBr (0.91 g, 10.5 mmol) and a drop of water was added. The mixture was heated at 80 °C for 2 h. After cooling to room temperature, saturated aqueous sodium chloride was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water, dried (MgSO₄) and then concentrated under reduced pressure. The resulting red oil was purified by column chromatography [silica gel, eluent CH₂Cl₂-AcOEt (4: 1 v/v)] to afford the title compound as a red solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of dichloromethane-n-hexane solution at room temperature.

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.93-0.97 Å) and were included in the refinement in the riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I) with the atom numbering. Displacement ellipsoids are drawn at the 30% probalility level. H atoms omitted for clarity.

Methyl 2,3-(3,6,9-trioxaundecane-1,11-diyldithio)-1,4,5,8- tetrathiafulvalene-6-carboxylate

Crystal data	
$C_{16}H_{20}O_5S_6$	$F_{000} = 1008$
$M_r = 484.68$	$D_{\rm x} = 1.537 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Cc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 7343 reflections
a = 22.604 (5) Å	$\theta = 3.4 - 27.1^{\circ}$
b = 5.2048 (10) Å	$\mu = 0.68 \text{ mm}^{-1}$
c = 17.801 (4) Å	<i>T</i> = 291 K
$\beta = 90.65 \ (3)^{\circ}$	Block, red
$V = 2094.1 (7) \text{ Å}^3$	$0.20\times0.13\times0.12~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	4254 independent reflections
Radiation source: fine-focus sealed tube	3370 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.101$
T = 291 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.6^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -28 \rightarrow 28$
$T_{\min} = 0.876, T_{\max} = 0.923$	$k = -6 \rightarrow 6$
9505 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.060$	$w = 1/[\sigma^2(F_o^2) + (0.0878P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.172$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.96	$\Delta \rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$
4254 reflections	$\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$
245 parameters	Extinction correction: none
2 restraints	Absolute structure: Flack (1983), 1855 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.12 (12)
Secondary atom site location: difference Fourier map	

Special details

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4826 (4)	1.8931 (13)	0.5758 (4)	0.0638 (17)
H1A	0.4419	1.8858	0.5598	0.096*
H1B	0.5076	1.8546	0.5340	0.096*
H1C	0.4915	2.0622	0.5942	0.096*
C2	0.4534 (3)	1.7154 (11)	0.6912 (3)	0.0426 (12)
C3	0.4679 (2)	1.5069 (10)	0.7458 (3)	0.0388 (11)
C4	0.4324 (2)	1.4479 (11)	0.8031 (3)	0.0413 (11)
H4	0.3979	1.5404	0.8115	0.050*
C5	0.5199 (2)	1.1345 (9)	0.8157 (3)	0.0368 (10)
C6	0.5581 (2)	0.9558 (10)	0.8382 (3)	0.0392 (11)
C7	0.6165 (2)	0.6004 (9)	0.9111 (3)	0.0361 (10)
C8	0.6520 (2)	0.6615 (10)	0.8524 (3)	0.0405 (11)
C9	0.7699 (3)	0.7676 (12)	0.8282 (3)	0.0507 (13)
H9A	0.8086	0.7011	0.8154	0.061*
H9B	0.7580	0.8888	0.7895	0.061*
C10	0.7740 (3)	0.9042 (10)	0.9022 (3)	0.0438 (12)
H10A	0.7372	0.9930	0.9122	0.053*
H10B	0.7813	0.7818	0.9423	0.053*
C11	0.8288 (3)	1.2375 (11)	0.9635 (4)	0.0546 (15)
H11A	0.7901	1.2783	0.9834	0.066*
H11B	0.8474	1.3978	0.9492	0.066*
C12	0.8653 (3)	1.1139 (13)	1.0241 (4)	0.0609 (16)
H12A	0.9037	1.0707	1.0039	0.073*
H12B	0.8715	1.2373	1.0643	0.073*
C13	0.7993 (3)	0.9435 (13)	1.1131 (4)	0.0578 (15)
H13A	0.7692	1.0616	1.0949	0.069*
H13B	0.8202	1.0245	1.1547	0.069*
C14	0.7710 (3)	0.7016 (13)	1.1390 (4)	0.0606 (16)
H14A	0.8020	0.5776	1.1497	0.073*
H14B	0.7511	0.7368	1.1858	0.073*
C15	0.6760 (3)	0.7176 (13)	1.0822 (3)	0.0577 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15A	0.6784	0.8429	1.0420	0.069*
H15B	0.6677	0.8086	1.1284	0.069*
C16	0.6266 (3)	0.5309 (13)	1.0653 (3)	0.0519 (14)
H16A	0.5894	0.6240	1.0649	0.062*
H16B	0.6250	0.4058	1.1056	0.062*
O1	0.49274 (19)	1.7087 (8)	0.6344 (2)	0.0524 (10)
O2	0.4141 (2)	1.8633 (9)	0.6967 (2)	0.0571 (11)
O3	0.82120 (18)	1.0828 (8)	0.8984 (2)	0.0526 (10)
O4	0.8395 (2)	0.8877 (8)	1.0548 (2)	0.0560 (10)
O5	0.7302 (2)	0.5875 (8)	1.0894 (2)	0.0587 (11)
S1	0.53276 (5)	1.3254 (3)	0.73569 (7)	0.0415 (3)
S2	0.45240 (6)	1.1969 (3)	0.86052 (7)	0.0456 (3)
S3	0.62439 (6)	0.8944 (3)	0.78907 (7)	0.0453 (3)
S4	0.54731 (6)	0.7502 (3)	0.91476 (7)	0.0417 (3)
S5	0.71732 (7)	0.5055 (3)	0.83051 (8)	0.0492 (4)
S6	0.63337 (7)	0.3600 (3)	0.97634 (7)	0.0486 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.081 (5)	0.063 (4)	0.047 (3)	-0.001 (4)	0.006 (3)	0.016 (3)
C2	0.043 (3)	0.044 (3)	0.040 (3)	-0.004(2)	-0.003 (2)	-0.004 (2)
C3	0.031 (3)	0.049 (3)	0.036 (3)	0.000(2)	0.0000 (19)	0.000 (2)
C4	0.028 (3)	0.050 (3)	0.046 (3)	-0.001 (2)	0.005 (2)	-0.005 (2)
C5	0.032 (3)	0.042 (2)	0.037 (3)	-0.002 (2)	0.0045 (19)	-0.0003 (19)
C6	0.044 (3)	0.038 (2)	0.035 (2)	-0.013 (2)	0.005 (2)	-0.0006 (18)
C7	0.038 (3)	0.033 (2)	0.038 (2)	-0.005 (2)	0.002 (2)	-0.0025 (18)
C8	0.045 (3)	0.038 (2)	0.038 (3)	-0.006 (2)	0.006 (2)	-0.0047 (19)
C9	0.046 (3)	0.064 (3)	0.042 (3)	0.000 (3)	0.014 (2)	0.004 (2)
C10	0.039 (3)	0.044 (3)	0.049 (3)	-0.002 (2)	0.011 (2)	0.003 (2)
C11	0.048 (3)	0.043 (3)	0.074 (4)	-0.003 (3)	0.021 (3)	-0.001 (3)
C12	0.049 (4)	0.062 (4)	0.072 (4)	-0.008 (3)	0.008 (3)	0.001 (3)
C13	0.058 (4)	0.063 (4)	0.053 (3)	-0.005 (3)	0.007 (3)	-0.009 (3)
C14	0.065 (4)	0.070 (4)	0.047 (3)	-0.009 (3)	-0.003 (3)	0.007 (3)
C15	0.071 (4)	0.061 (3)	0.042 (3)	0.011 (3)	0.006 (3)	-0.006 (3)
C16	0.048 (3)	0.071 (4)	0.038 (3)	0.003 (3)	0.018 (2)	0.006 (2)
01	0.050 (2)	0.060 (2)	0.048 (2)	0.014 (2)	0.0091 (18)	0.0153 (18)
O2	0.050 (2)	0.064 (2)	0.058 (3)	0.024 (2)	0.0010 (19)	0.0008 (19)
03	0.043 (2)	0.058 (2)	0.057 (2)	-0.007 (2)	0.0155 (18)	0.0001 (18)
O4	0.061 (3)	0.052 (2)	0.054 (2)	0.006 (2)	0.0100 (19)	0.0062 (17)
O5	0.056 (3)	0.062 (2)	0.058 (3)	-0.001 (2)	0.001 (2)	-0.0022 (19)
S1	0.0371 (7)	0.0476 (7)	0.0400 (6)	0.0027 (6)	0.0104 (5)	0.0065 (5)
S2	0.0393 (7)	0.0540 (7)	0.0439 (7)	-0.0046 (6)	0.0138 (5)	0.0040 (6)
S3	0.0413 (7)	0.0513 (7)	0.0436 (7)	0.0017 (6)	0.0109 (5)	0.0095 (5)
S4	0.0392 (7)	0.0459 (7)	0.0403 (6)	-0.0028 (5)	0.0083 (5)	0.0052 (5)
S5	0.0482 (8)	0.0440 (7)	0.0557 (9)	0.0045 (6)	0.0117 (6)	-0.0058 (6)
S6	0.0592 (9)	0.0414 (7)	0.0452 (7)	-0.0013 (6)	0.0026 (6)	0.0061 (5)

Geometric parameters (Å, °)

C1—O1	1.434 (7)	C10—O3	1.418 (7)
C1—H1A	0.9600	C10—H10A	0.9700
C1—H1B	0.9600	C10—H10B	0.9700
C1—H1C	0.9600	C11—O3	1.420 (7)
C2—O2	1.182 (7)	C11—C12	1.496 (10)
C2—O1	1.354 (7)	C11—H11A	0.9700
C2—C3	1.491 (7)	C11—H11B	0.9700
C3—C4	1.342 (7)	C12—O4	1.425 (8)
C3—S1	1.754 (5)	C12—H12A	0.9700
C4—S2	1.716 (6)	C12—H12B	0.9700
C4—H4	0.9300	C13—O4	1.418 (7)
C5—C6	1.328 (7)	C13—C14	1.487 (9)
C5—S2	1.761 (5)	С13—Н13А	0.9700
C5—S1	1.763 (5)	C13—H13B	0.9700
C6—S4	1.752 (5)	C14—O5	1.403 (8)
C6—S3	1.772 (6)	C14—H14A	0.9700
С7—С8	1.362 (7)	C14—H14B	0.9700
C7—S6	1.747 (5)	C15—O5	1.404 (8)
C7—S4	1.749 (6)	C15—C16	1.507 (10)
C8—S5	1.733 (6)	C15—H15A	0.9700
C8—S3	1.765 (6)	C15—H15B	0.9700
C9—C10	1.498 (8)	C16—S6	1.824 (6)
C9—S5	1.811 (6)	C16—H16A	0.9700
С9—Н9А	0.9700	C16—H16B	0.9700
С9—Н9А С9—Н9В	0.9700 0.9700	С16—Н16В	0.9700
C9—H9A C9—H9B O1—C1—H1A	0.9700 0.9700 109.5	C16—H16B C12—C11—H11B	0.9700 108.8
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B	0.9700 0.9700 109.5 109.5	C16—H16B C12—C11—H11B H11A—C11—H11B	0.9700 108.8 107.7
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B	0.9700 0.9700 109.5 109.5 109.5	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11	0.9700 108.8 107.7 114.1 (5)
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C	0.9700 0.9700 109.5 109.5 109.5 109.5	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A	0.9700 108.8 107.7 114.1 (5) 108.7
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C H1A—C1—H1C	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A	0.9700 108.8 107.7 114.1 (5) 108.7 108.7
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C H1A—C1—H1C H1B—C1—H1C	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C H1A—C1—H1C H1B—C1—H1C O2—C2—O1	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C H1A—C1—H1C H1B—C1—H1C O2—C2—O1 O2—C2—C3	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 108.7 107.6
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C H1B—C1—H1C H1B—C1—H1C O2—C2—O1 O2—C2—C3 O1—C2—C3	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 108.7 107.6 109.6 (5)
C9—H9A C9—H9B O1C1H1A O1C1H1B H1AC1H1B O1C1H1C H1AC1H1C H1BC1H1C O2C2O1 O2C2C3 O1C2C3 C4C3C2	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8
C9—H9A C9—H9B O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C H1A—C1—H1C H1B—C1—H1C O2—C2—O1 O2—C2—C3 O1—C2—C3 C4—C3—C2 C4—C3—S1	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B H12A—C13—H13A C14—C13—H13A	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8
C9-H9A $C9-H9B$ $O1-C1-H1A$ $O1-C1-H1B$ $H1A-C1-H1B$ $O1-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $O2-C2-O1$ $O2-C2-O3$ $O1-C2-C3$ $C4-C3-C2$ $C4-C3-S1$ $C2-C3-S1$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13A O4—C13—H13B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8
C9-H9A $C9-H9B$ $O1C1H1A$ $O1C1H1B$ $H1AC1H1B$ $O1C1H1C$ $H1BC1H1C$ $H1BC1H1C$ $O2C2C3$ $O1C2C3$ $C4C3C2$ $C4C3S1$ $C2C3S1$ $C3C4S2$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13B C14—C13—H13B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8 109.8
C9-H9A $C9-H9B$ $O1-C1-H1A$ $O1-C1-H1B$ $H1A-C1-H1B$ $O1-C1-H1C$ $H1A-C1-H1C$ $H1B-C1-H1C$ $O2-C2-O1$ $O2-C2-O1$ $O2-C2-C3$ $O1-C2-C3$ $C4-C3-C2$ $C4-C3-S1$ $C2-C3-S1$ $C3-C4-S2$ $C3-C4-H4$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4) 121.0	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13A C14—C13—H13B H13A—C13—H13B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8
C9-H9A $C9-H9B$ $O1-C1-H1A$ $O1-C1-H1B$ $H1A-C1-H1B$ $H1A-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $O2-C2-O1$ $O2-C2-O1$ $O2-C2-C3$ $O1-C2-C3$ $C4-C3-C2$ $C4-C3-S1$ $C2-C3-S1$ $C3-C4-S2$ $C3-C4-H4$ $S2-C4-H4$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4) 121.0 121.0	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B H12A—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B O5—C14—C13	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8 109.8 109.8 108.2 116.4 (5)
C9-H9A $C9-H9B$ $O1-C1-H1A$ $O1-C1-H1B$ $H1A-C1-H1B$ $O1-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $O2-C2-O1$ $O2-C2-O3$ $O1-C2-C3$ $C4-C3-C2$ $C4-C3-S1$ $C2-C3-S1$ $C3-C4-S2$ $C3-C4-H4$ $S2-C4-H4$ $C6-C5-S2$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4) 121.0 123.8 (4)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B O5—C14—C13 O5—C14—H14A	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 108.2
C9-H9A $C9-H9B$ $O1C1H1A$ $O1C1H1B$ $H1AC1H1B$ $O1C1H1C$ $H1BC1H1C$ $H1BC1H1C$ $O2C2C3$ $O1C2C3$ $C4C3C2$ $C4C3C2$ $C4C3S1$ $C2C3S1$ $C3C4S2$ $C3C4H4$ $S2C4H4$ $S2C4H4$ $C6C5S2$ $C6C5S1$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4) 121.0 123.8 (4) 121.7 (4)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B H13A—C13—H13B O5—C14—C13 O5—C14—H14A C13—C14—H14A	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 108.2 116.4 (5) 108.2 108.2
C9-H9A $C9-H9B$ $O1-C1-H1A$ $O1-C1-H1B$ $H1A-C1-H1B$ $H1A-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $O2-C2-O1$ $O2-C2-O3$ $O1-C2-C3$ $C4-C3-C2$ $C4-C3-S1$ $C2-C3-S1$ $C3-C4-S2$ $C3-C4-H4$ $S2-C4-H4$ $S2-C4-H4$ $C6-C5-S2$ $C6-C5-S1$ $S2-C5-S1$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4) 121.0 123.8 (4) 121.7 (4) 114.4 (3)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13A O4—C13—H13B C14—C13—H13B H13A—C13—H13B O5—C14—C13 O5—C14—H14A C13—C14—H14A	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8 109.8 109.8 108.2 116.4 (5) 108.2 108.2 108.2
C9-H9A $C9-H9B$ $O1-C1-H1A$ $O1-C1-H1B$ $H1A-C1-H1B$ $H1A-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $O2-C2-O1$ $O2-C2-O3$ $O1-C2-C3$ $C4-C3-C2$ $C4-C3-C2$ $C4-C3-S1$ $C2-C3-S1$ $C3-C4-S2$ $C3-C4-H4$ $S2-C4-H4$ $S2-C4-H4$ $C6-C5-S2$ $C6-C5-S1$ $S2-C5-S1$ $S2-C5-S1$ $C5-C6-S4$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4) 121.0 123.8 (4) 121.7 (4) 114.4 (3) 124.5 (4)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B H13A—C13—H13B O5—C14—C13 O5—C14—H14A C13—C14—H14B C13—C14—H14B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8 109.8 109.8 109.8 108.2 116.4 (5) 108.2 108.2 108.2 108.2
C9-H9A $C9-H9B$ $O1-C1-H1A$ $O1-C1-H1B$ $H1A-C1-H1B$ $O1-C1-H1C$ $H1B-C1-H1C$ $H1B-C1-H1C$ $O2-C2-O1$ $O2-C2-O1$ $O2-C2-C3$ $O1-C2-C3$ $C4-C3-C2$ $C4-C3-S1$ $C2-C3-S1$ $C3-C4-S2$ $C3-C4-H4$ $S2-C4-H4$ $S2-C4-H4$ $S2-C4-H4$ $S2-C5-S1$ $S2-C5-S1$ $S2-C5-S1$ $S2-C5-S1$ $S2-C5-S1$	0.9700 0.9700 109.5 109.5 109.5 109.5 109.5 109.5 125.4 (5) 125.5 (6) 109.1 (5) 122.2 (5) 117.6 (4) 120.2 (4) 118.1 (4) 121.0 121.0 123.8 (4) 121.7 (4) 114.4 (3) 124.5 (4) 121.9 (4)	C16—H16B C12—C11—H11B H11A—C11—H11B O4—C12—C11 O4—C12—H12A C11—C12—H12A O4—C12—H12B C11—C12—H12B H12A—C12—H12B O4—C13—C14 O4—C13—H13A C14—C13—H13A C14—C13—H13B C14—C13—H13B H13A—C13—H13B H13A—C13—H13B O5—C14—C13 O5—C14—H14A C13—C14—H14A C13—C14—H14B H14A—C14—H14B	0.9700 108.8 107.7 114.1 (5) 108.7 108.7 108.7 108.7 107.6 109.6 (5) 109.8 109.8 109.8 109.8 109.8 109.8 109.8 108.2 116.4 (5) 108.2 108.2 108.2 108.2 108.2 108.2 108.2

supplementary materials

C8—C7—S6	123.4 (4)	O5-C15-H15A	109.5
C8—C7—S4	117.4 (4)	С16—С15—Н15А	109.5
S6—C7—S4	118.9 (3)	O5-C15-H15B	109.5
C7—C8—S5	125.0 (4)	C16—C15—H15B	109.5
C7—C8—S3	116.3 (4)	H15A—C15—H15B	108.1
S5—C8—S3	118.3 (3)	C15—C16—S6	114.7 (4)
C10—C9—S5	111.8 (4)	С15—С16—Н16А	108.6
С10—С9—Н9А	109.3	S6—C16—H16A	108.6
S5—C9—H9A	109.3	C15-C16-H16B	108.6
С10—С9—Н9В	109.3	S6—C16—H16B	108.6
85—С9—Н9В	109.3	H16A—C16—H16B	107.6
Н9А—С9—Н9В	107.9	C2—O1—C1	115.2 (5)
O3—C10—C9	107.9 (4)	C10—O3—C11	114.6 (4)
O3-C10-H10A	110.1	C13—O4—C12	112.3 (5)
С9—С10—Н10А	110.1	C14—O5—C15	114.9 (5)
O3—C10—H10B	110.1	C3—S1—C5	94.3 (2)
С9—С10—Н10В	110.1	C4—S2—C5	95.4 (2)
H10A-C10-H10B	108.4	C8—S3—C6	95.9 (3)
O3—C11—C12	113.9 (5)	C7—S4—C6	96.3 (3)
O3—C11—H11A	108.8	C8—S5—C9	102.3 (3)
C12—C11—H11A	108.8	C7—S6—C16	102.0 (3)
O3—C11—H11B	108.8		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H…A
C4—H4···O3 ⁱ	0.93	2.35	3.127 (7)	141
Symmetry codes: (i) $x - 1/2$, $y + 1/2$, z.				

sup-6

Fig. 1